
2.

In an automatic air conditioner controller, there is a sensor to sense room temperature. If

temperature increases then the controller should increase the speed of the rotor of the

compressor. If the speed of the compressor increases then it increases the speed of the fan. The

above controller is designed with a fuzzy logic controller with the following three fuzzy sets.

T: Temp is High

{ 0.3
20 , 0.7

30 , 0.8
40 , 1.0

50 }

R: Rotor is High

{ 0.2
20 , 0.4

40 , 0.6
60 , 0.8

80 , 0.9
100 , 1.0

120 }

S: Fan speed is High

{ 0.33
500 , 0.67

1000 , 0.95
1500 , 1.0

2000 }

a) Given the above, compute the following rules

R1: If temperature is High then rotation is High

R2: If rotation is High then fan speed is High

b) Compute , the composition of the relation R1 and R2.𝑅1∘𝑅2
c) Give the crisp value of the fuzzy value of fan speed when temperature is 40.

[5x1 + 2.5 + 2.5 = 10]

Detail solution:

a) T: Temp is High

{ 0.3
20 , 0.7

30 , 0.8
40 , 1.0

50 }

R: Rotor is High

{ 0.2
20 , 0.4

40 , 0.6
60 , 0.8

80 , 0.9
100 , 1.0

120 }

R1: If temperature is High then rotation is High

20 40 60 80 100 120

20 0.2 0.3 0.3 0.3 0.3 0.3

30 0.2 0.4 0.6 0.7 0.7 0.7

40 0.2 0.4 0.6 0.8 0.8 0.8

50 0.2 0.4 0.6 0.8 0.9 1.0



R: Rotor is High

{ 0.2
20 , 0.4

40 , 0.6
60 , 0.8

80 , 0.9
100 , 1.0

120 }

S: Fan speed is High

{ 0.33
500 , 0.67

1000 , 0.95
1500 , 1.0

2000 }

R2: If rotation is High then fan speed is High

500 1000 1500 2000

20 0.2 0.2 0.2 0.2

40 0.33 0.4 0.4 0.4

60 0.33 0.6 0.6 0.6

80 0.33 0.67 0.8 0.8

100 0.33 0.67 0.9 0.9

120 0.33 0.67 0.95 1.0

b) Compute , the composition of the relation R1 and R2.𝑅1∘𝑅2

R1 R2

500 1000 1500 2000

20 0.2 0.2 0.2 0.2

40 0.33 0.4 0.4 0.4

60 0.33 0.6 0.6 0.6

80 0.33 0.67 0.8 0.8

100 0.33 0.67 0.9 0.9

120 0.33 0.67 0.95 1.0



20 40 60 80 100 120

20 0.2 0.3 0.3 0.3 0.3 0.3

30 0.2 0.4 0.6 0.7 0.7 0.7

40 0.2 0.4 0.6 0.8 0.8 0.8

50 0.2 0.4 0.6 0.8 0.9 1.0

Max-min composition is applied here.

µT(20, 500) = max{min[µR(20, 20), µS(20, 500)], min[µR(20, 40), µS(40, 500), min[µR(20, 60),
µS(60, 500), min[µR(20, 80), µS(80, 500), min[µR(20, 100), µS(100, 500), min[µR(20, 120),
µS(120, 500)]}
= max[0.2,0.3,0.3,0.3,0.3,0.3] = 0.3

µT(20, 1000) = max{min[µR(20, 20), µS(20, 100)], min[µR(20, 40), µS(40, 1000), min[µR(20, 60),
µS(60, 1000), min[µR(20, 80), µS(80, 1000), min[µR(20, 100), µS(100, 1000), min[µR(20, 120),
µS(120, 1000)]}
= max[0.2,0.3,0.3,0.3,0.3,0.3] = 0.3

500 1000 1500 2000



Same way calculating other values we get

𝑅1∘𝑅2

c) Give the crisp value of the fuzzy value of fan speed when temperature is 40.

Defuzzified or crisp value of fan speed is

                             𝐶 = 𝑖=1

𝑛

∑ 𝑥
𝑖
μ(𝑥

𝑖
)

𝑖=1

𝑛

∑ μ(𝑥
𝑖
)

            = 500*0.33 + 1000*0.67 + 1500*0.8 + 2000*0.8( )
0.33 + 0.67 + 0.8 + 0.8

                                     =  1398

3. A smart washing machine is to be designed which would decide spin(the speed

of the rotor in rotation per minute) and time (in minutes) of washing, and

detergent (the amount in cc) to be dispensed. The machine will decide the above

based on the following three input (will be decided with appropriate sensors

attached within the machine)

a) Weight in the range 0.5kg to 6.0 kg

b) Cloth type: There are three types of clothes like cotton,woollen and

synthetic and each type is measurable in 1,2,...10 scale.

c) Pressure: water pressure in the range 1…6 pascal.

Given the above, answer the following questions.

a) What are the linguistic hedges you should consider to fuzzily define each

input and output. Draw the membership function for each fuzzy input and

output set.

20 0.3 0.3 0.3 0.3

30 0.33 0.67 0.7 0.7

40 0.33 0.67 0.8 0.8

50 0.33 0.67 0.95 1.0



b) How a fuzzy rule would look like. Give an example and illustrate your

answer.

c) How many total rules will be there in the rule base.

d) Using the Takagi and Sugeno approach, how can a rule be inferred? And

how can an output be computed?

[5+2.5+2.5+5 = 15]

Detailed solution:

a) Linguistic hedges are words or phrases that modify the meaning of fuzzy sets, such
as very, more or less, slightly, etc. They can be used to adjust the shape of the
membership functions and make them more flexible. For example, if we have a fuzzy
set for weight called light, we can use the linguistic hedge very to create a new fuzzy set
called very light, which has a narrower and higher membership function than light.

To fuzzily define each input and output, we need to choose appropriate fuzzy sets and
membership functions for them. For example, we can use the following fuzzy sets and
membership functions for the input weight:

● Very light: triangular membership function with parameters (0.5, 0.5, 1.5)
● Light: triangular membership function with parameters (0.5, 1.5, 2.5)
● Medium: triangular membership function with parameters (1.5, 2.5, 3.5)
● Heavy: triangular membership function with parameters (2.5, 3.5, 4.5)
● Very heavy: triangular membership function with parameters (3.5, 4.5, 6.0)

Similarly, we can use the following fuzzy sets and membership functions for the input
cloth type:

● Cotton: trapezoidal membership function with parameters (1, 1, 3, 4)
● Woolen: trapezoidal membership function with parameters (3, 4, 6, 7)
● Synthetic: trapezoidal membership function with parameters (6, 7, 9, 10)

And for the input pressure:

● Low: triangular membership function with parameters (1, 1, 2.5)
● Medium: triangular membership function with parameters (1, 2.5, 4)
● High: triangular membership function with parameters (2.5, 4, 6)

For the output spin, we can use the following fuzzy sets and membership functions:

● Slow: triangular membership function with parameters (0, 0, 500)
● Medium: triangular membership function with parameters (0, 500, 1000)
● Fast: triangular membership function with parameters (500, 1000, 1500)

For the output time, we can use the following fuzzy sets and membership functions:

● Short: triangular membership function with parameters (0, 0, 15)



● Medium: triangular membership function with parameters (0, 15, 30)
● Long: triangular membership function with parameters (15, 30, 45)

For the output detergent, we can use the following fuzzy sets and membership
functions:

● Low: triangular membership function with parameters (0, 0, 50)
● Medium: triangular membership function with parameters (0, 50, 100)
● High: triangular membership function with parameters (50, 100, 150)

Weight:

Cloth type:



Pressure:

Spin:

Time:



Detergent:

b. A fuzzy rule could look like this:

Rule: If Weight is Very Light and Cloth Type is Cotton and Pressure is Low, then

Spin Speed is Slow, Time of Washing is Short, and Detergent Dispensed is Little.

This rule illustrates how the linguistic terms for the input variables (Weight, Cloth

Type, and Pressure) are combined to determine the linguistic terms for the output

variables (Spin Speed, Time of Washing, and Detergent Dispensed) using fuzzy

logic.

c. Total Rules in the Rule Base:



To determine the total number of rules, you multiply the number of linguistic

terms for each input variable. Given:

Total rules = 5*3*3 = 45

d. Takagi and Sugeno Approach

Using the Takagi and Sugeno approach, a rule can be inferred by applying the fuzzy
inference process to the antecedent part of the rule, which consists of fuzzy sets and
logical operators.

● The antecedent part determines the degree of fulfilment of the rule for a given
input.

● The output of the rule is computed by using the consequent part of the rule,
which is a linear function of the input variables. The output of the rule is weighted
by the degree of fulfilment of the rule.

● The final output of the system is obtained by aggregating the outputs of all the
rules using a weighted average method.

For example, suppose we have the following rule for a washing machine:

IF weight is light AND cloth type is cotton THEN spin = 500 + 50 * weight

If the input is weight = 1.5 kg and cloth type = 2 (cotton), then we can infer the rule as
follows:

● First, we calculate the membership values of the input variables in the fuzzy sets
of the antecedent part using the triangular membership functions defined earlier.

● weight is light: triangular_mf(1.5, 0.5, 1.5, 2.5) = 1.0
● cloth type is cotton: trapezoidal_mf(2, 1, 1, 3, 4) = 0.5

● Second, we apply the logical operator AND to the membership values using the
minimum function.

● weight is light AND cloth type is cotton: min(1.0, 0.5) = 0.5

● Third, we use the consequent part of the rule to compute the output value for the
input variables using the linear function.

● spin = 500 + 50 * weight = 500 + 50 * 1.5 = 575

● Fourth, we weight the output value by the degree of fulfilment of the rule, which is
the result of the antecedent part.

● weighted spin = 0.5 * 575 = 287.5



The final output of the system is the weighted average of the outputs of all the rules that
are applicable for the input. For example, if there are two rules with outputs 287.5 and
312.5, and degrees of fulfilment 0.5 and 0.4, respectively, then the final output is:

(0.5 * 287.5 + 0.4 * 312.5) / (0.5 + 0.4) = 298.33



1a: Decide a minimally configured vanilla network that you
should consider to build a prediction model with the given
training data set. Justify the configure of your proposed
network.

To build a prediction model with the given training dataset, we can use a min-
imally configured vanilla network with the following architecture:

• Input layer: 2 neurons (corresponding to Input (I1) and Input (I2))

• Hidden layer: 2 neurons

• Output layer: 1 neuron (corresponding to Output (O))

Justification:

• The input layer should have 2 neurons to accommodate the two input
features (I1 and I2).

• The hidden layer with 2 neurons provides sufficient capacity for learning
the underlying patterns in the data.

• The output layer with 1 neuron is suitable for regression tasks where the
goal is to predict a continuous output (as in this case).

1b: For the network, you have given compute the following
i) Output of the input layer ii) Input to the hidden layer
ii) Output from the hidden layer iV) input to the output
layer V) Output from the output layer

Let’s assume some parameters to proceed furthur like activation function is
sigmoid and learning rate is 0.5 and gradient descent is used.

• Weights from input layer to hidden layer: W1

• Bias of hidden layer: b1

• Weights from hidden layer to output layer: W2

• Bias of output layer: b2

Let’s assume the weights and biases are initialized as follows for simplicity:

• W1 =

[
0.1 0.2
0.3 0.4

]

• b1 =

[
0.01
0.02

]

1



• W2 =

[
0.5
0.6

]
• b2 = 0.03

The learning rate α is given as 0.5.
Forward Pass:

1. output of the input layer:
Same as input values

2. Input to the hidden layer:

Z1 = XW1 + b1 =
[
0.4 −0.7

] [0.1 0.2
0.3 0.4

]
+

[
0.01
0.02

]
=

[
−0.17
−0.18

]
3. Output from the hidden layer (after applying sigmoid activation function):

A1 = σ(Z1) =
1

1+e−Z1
=

[ 1
1+e0.17

1
1+e0.18

]
=

[
0.457
0.455

]
4. Input to the output layer:

Z2 = A1W2 + b2 =
[
0.457 0.455

] [0.5
0.6

]
+ 0.03 = 0.548

5. Output from the output layer (after applying sigmoid activation function):
A2 = σ(Z2) =

1
1+e−Z2

= 1
1+e−0.548 = 0.634

1C. Show the model parameters when the network got up-
dated when it trained with any one training data.

We’ll use the Mean Squared Error (MSE) loss function, which is defined as
L = 1

2 (A2 − Y )2, where Y is the true output. The factor of 1/2 is included for
convenience when taking the derivative.

1. Compute the derivative of the loss function with respect to A2:
∂L
∂A2

= A2 − Y = 0.634− 0.1 = 0.534.

2. Compute the derivative of A2 with respect to Z2:
∂A2

∂Z2
= A2 ∗ (1−A2) = 0.634 ∗ (1− 0.634) = 0.232.

3. Compute the derivative of the loss function with respect to Z2 using the
chain rule:
∂L
∂Z2

= ∂L
∂A2

∗ ∂A2

∂Z2
= 0.534 ∗ 0.232 = 0.124.

4. Compute the derivative of Z2 with respect to W2, b2, and A1:

∂Z2

∂W2
= A1 =

[
0.457
0.455

]
, ∂Z2

∂b2
= 1, and ∂Z2

∂A1
= W2 =

[
0.5
0.6

]
.

2



5. Compute the derivative of the loss function with respect to W2 and b2
using the chain rule:

∂L
∂W2

= ∂L
∂Z2

∗ ∂Z2

∂W2
= 0.124 ∗

[
0.457
0.455

]
=

[
0.057
0.056

]
and ∂L

∂b2
= ∂L

∂Z2
∗ ∂Z2

∂b2
=

0.124 ∗ 1 = 0.124.

6. Compute the derivative of the loss function with respect to A1 using the
chain rule:

∂L
∂A1

= ∂L
∂Z2

∗ ∂Z2

∂A1
= 0.124 ∗

[
0.5
0.6

]
=

[
0.062
0.074

]
.

7. Compute the derivative of A1 with respect to Z1:

∂A1

∂Z1
= A1 ∗ (1−A1) =

[
0.457 ∗ (1− 0.457)
0.455 ∗ (1− 0.455)

]
=

[
0.248
0.248

]
.

8. Compute the derivative of the loss function with respect to Z1 using the
chain rule:

∂L
∂Z1

= ∂L
∂A1

∗ ∂A1

∂Z1
=

[
0.062
0.074

]
∗
[
0.248
0.248

]
=

[
0.015
0.018

]
.

9. Compute the derivative of Z1 with respect to W1 and b1:
∂Z1

∂W1
= X =

[
0.4 −0.7

]
and ∂Z1

∂b1
= 1.

10. Compute the derivative of the loss function with respect to W1 and b1
using the chain rule:

∂L
∂W1

= ∂L
∂Z1

∗ ∂Z1

∂W1
=

[
0.015
0.018

]
∗
[
0.4 −0.7

]
=

[
0.006 −0.011
0.007 −0.013

]
and ∂L

∂b1
=

∂L
∂Z1

∗ ∂Z1

∂b1
=

[
0.015
0.018

]
∗ 1 =

[
0.015
0.018

]
.

Update Weights and Biases:

• W1 = W1−α ∂L
∂W1

=

[
0.1 0.2
0.3 0.4

]
−0.5∗

[
0.006 −0.011
0.007 −0.013

]
=

[
0.097 0.206
0.297 0.407

]

• b1 = b1 − α ∂L
∂b1

=

[
0.01
0.02

]
− 0.5 ∗

[
0.015
0.018

]
=

[
0.003
0.011

]

• W2 = W2 − α ∂L
∂W2

=

[
0.5
0.6

]
− 0.5 ∗ 0.244 =

[
0.378
0.478

]
• b2 = b2 − α ∂L

∂b2
= 0.03− 0.5 ∗ 0.124 = −0.032

3



4. Activation Functions

1. Log-Sigmoid Function

• Expression: f(x) = 1
1+e−x

• Parameters: The input x is the only parameter.

• Graph: The graph starts at 0, crosses 0.5 at x = 0, and ends at 1.
It’s an S-shaped curve. The steepness of the curve is controlled by
the magnitude of x.

2. Tanh-Sigmoid Function

• Expression: f(x) = tanh(x) = ex−e−x

ex+e−x

• Parameters: The input x is the only parameter.

• Graph: The graph starts at -1, crosses 0 at x = 0, and ends at 1. It’s
also an S-shaped curve, but it ranges from -1 to 1.

3. Radial Bias Function

• Expression: f(x) = e−(x−c)2/(2σ2)

• Parameters: The center c and the spread σ.

• Graph: The graph is a bell-shaped curve centered at c. The width
of the bell is controlled by σ.

4. Rectified Linear Unit Function (ReLU)

• Expression: f(x) = max(0, x)

• Parameters: The input x is the only parameter.

• Graph: The graph is zero for negative x and linear with slope 1 for
positive x.

5. Piecewise Linear Function

• Expression:

f(x) =


m1x+ c1 if x < x1

m2x+ c2 if x1 ≤ x < x2

...

mnx+ cn if x ≥ xn−1

• Parameters: The slopes mi, the y-intercepts ci, and the points xi

where the function changes.

• Graph: The graph is flat for x < x1 and x > xn, and has a slope of
mi between xi−1 and xi for i = 2, ..., n.
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